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ST CYRES LECTURE

Endothelium in control

A H Henderson

Clinical science has evolved since the days of
Sir Thomas Lewis, who gave the St Cyres
lecture in 1931 and whose eponymous chair I
occupy. It involves still the penetration of
astute clinical observation, but has come
increasingly to embrace the elucidation of
underlying mechanisms in the more con-
trolled conditions of the laboratory. Its com-
pass is being stretched by the reductionism of
molecular and cell biology, but these exciting
developments do not exonerate us from the
ever daunting task of seeking to understand
the coordinated behaviour of the whole. Per-
haps biomathematics will give new impetus to
our efforts to discern form in the noise. Never
was there greater need for cross-talk between
the different scientific disciplines and between
scientists and clinicians.
The greatest growth area in cardiovascular

science over recent years must surely be in the
role of endothelium. Not only is there a lot of
it-equivalent in mass to five normal hearts
and in area to half a dozen tennis courts per
standard 70 kg man-but it is coming to be
recognised as a cardiovascular endocrine
organ in its own right, occupying a critically
strategic interface between blood and body,
and subserving a multitude of regulatory
roles. These range from acting as a selective
permeability barrier, through vasomotor con-
trol, pro- and antithrombotic mechanisms and
regulation of vascular growth, to metabolic
and immunological activity. We here consider
just one-namely the production of endothe-
lium derived relaxing factor (EDRF), a
powerful vasodilator substance released from
the endothelium of all blood vessels of all
species studied.
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Endothelium derived relaxing factor
THE PHENOMENON DISCOVERED
Before 1980, the existence of EDRF was un-

known. It was in 1980 that Furchgott and
Zawadski published their now classic paper
describing endothelium dependent vasodilata-
tion to acetylcholine.' They had elucidated the
paradox, long known to pharmacologists, that
acetylcholine was vasodilator in vivo yet
vasoconstrictor when studied in vitro with
arterial strip preparations (where it transpired
that the delicate endothelium is generally
inadvertently removed during preparation).
This explained the findings of our own studies
at that time, for we had serendipitously (and
initially unknowingly) encountered the phen-
omenon while developing an isolated perfused
coronary artery preparation of the rabbit to

study vasomotor regulatory mechanisms. As
we gained experience with the preparation,
frustratingly we met with increasing difficulty
in getting the arteries to constrict.2 Indeed
constrictor responses to the usual vasocon-
strictor agents were virtually abolished with
better preparation due, it became apparent, to
endothelial preservation.

Furchgott had suggested that the endothe-
lium dependent vasodilator influence might be
a humoral factor.' We developed a cascade
bioassay system in which effluent from a per-
fused endothelialised "donor" artery perfused
a denuded, pre-constricted "recipient"
artery,3 and were able to confirm that the
phenomenon was indeed due to endothelial
production of a humoral agent, EDRF, both
tonically in the basal state and to a greater
extent when stimulated, for example, by
acetylcholine. By experiments in which we
altered the transit time between donor and
recipient vessels, we showed that EDRF is
unstable, with a half life measured in
seconds,3 though it is likely to be less than a
second in vivo.4

EDRF: THE ENDOGENOUS NITROVASODILATOR
The possibility that EDRF might be nitric
oxide emerged.'7 Direct evidence for this was
provided by Palmer and colleagues in 1987.8
There has, however, remained a suspicion
that EDRF may be not nitric oxide itself but a
closely related molecule.9 EDRF is thus the
endogenous counterpart of the nitrovaso-
dilator drugs.'0 The metabolic step involved
in the production of EDRF is that of activat-
ing nitric oxide synthase to provide nitric
oxide from its precursor substrate, L-argi-
nine," the supply of which seems not nor-
mally to be rate-limiting because it can be
regenerated endogenously from other amino
acids. The short half life of EDRF is thus
explained, for nitric oxide is rapidly converted
to nitrite and nitrate in the presence of water
and oxygen, and even more rapidly by super-
oxide radicals, which are widely present in
biological systems.'2 '3

ERDF RELEASE
The list of conditions now known to stimulate
EDRF release is large (for reviews, see'1'7). It
includes agents liberated during platelet
aggregation and thrombosis (serotonin, ATP
and ADP, thrombin) (thereby implying a
further mechanism whereby healthy endothe-
lium inhibits thrombosis) and a large number
of hormones and neurotransmitter substances
(for example, substance P, calcitonin gene

16



Endothelium in control

related peptide, acetylcholine, noradrenaline,
vasopressin, vasoactive intestinal peptide,
bradykinin, histamine) (implying means
whereby (a) intravascular agents may trans-
duce their signals across the endothelial
barrier and (b) agents liberated from adven-
titial autonomic nerve endings on smaller
arteries may exert their action after diffusion
through to the endothelium). As an experi-
mental tool, calcium ionophore can be used to
stimulate EDRF release independently of
receptors. Perhaps the most important
physiological stimulant of EDRF release,
though, is flow rate'8 acting through the
relatively small longitudinal shear force
experienced uniquely by the endothelium-as
confirmed by experiments with fluids of
different viscosity'9 and as increased with
pulsatile flow.20
The mechanism of agonist stimulated

release of EDRF from endothelial cells
involves occupation of specific receptors, lead-
ing to activation of the phosphoinositol path-
way and an increase in cytosolic calcium,21-28
both from release of internally stored calcium
(which causes a transient high calcium level)
and from continuing influx of extracellular
calcium (which maintains a level of calcium
sufficient to stimulate EDRF production but
which is lower that that which would
stimulate prostacyclin production).29 Shear
force is thought to act through altering potas-
sium conductance, leading by ionic inter-
change to an increase in cytosolic calcium.3>32
Calcium (via calcium calmodulin) activates
nitric oxide synthase33 to produce EDRF. The
stimulated production of EDRF is dependent
also on the provision of mitochondrial ATP.34
Some negative feedback control exists in that
EDRF activates soluble guanylate cyclase in
endothelial as in other cells (see below) and
thus inhibits its own production in response
to some agonists.35 36

ACTION OF EDRF
Nitric oxide interacts with the haem moiety
present in the cytosolic enzyme, soluble
guanylate cyclase, to activate it and thereby
raise intracellular concentrations of cyclic
GMP. 10 37-40
An increased intracellular concentration of

cyclic GMP inhibits the agonist induced
activation of the phosphoinositol pathway,
which is responsible for stimulating calcium
influx and intracellular calcium release and thus
for increasing cytosolic free calcium.4'" An
increase in cyclic GMP in vascular smooth
muscle cells therefore relaxes vascular smooth
muscle tone, particularly where this is
increased by receptor mediated stimulation.45
It has analogous effects in other cell types-for
example, platelets, myocardium (see below).
Haemoglobin also contains a haem moiety

with which nitric oxide competitively inter-
acts.4 47 The sink of haemoglobulin within
erythrocytes,48 as well as haemoglobin com-

plexed to haptoglobin in plasma,49 ensure that
EDRF has no downstream activity within the
vascular compartment, as experimentally con-

firmed.50 Its action is thus localised to the
immediately subjacent vascular smooth mus-
cle. Each millimetre ofendothelium controls its
own little bit of the vascular system.

VESSEL DIFFERENCES
EDRF activity has been demonstrated in every
vessel studied-arteries, microvessels, and
veins-and in every species studied,4 1617 with
the implication that it is of primitive evolution-
ary origin. There are however considerable
differences in the level of activity in different
vessels.2 51-54 Differential bioassay has confirmed
that these are due to differences both in the
response to EDRF and in its release.55 These
may be differences in basal release, flow related
release, or release resulting from receptor
stimulation, also with differences in specific
receptor responsiveness. Differences in ob-
served responses must also take account of
differential baselines, as set by the levels ofbasal
or flow related EDRF activity, because a "re-
sponse" represents the difference between the
starting level (baseline) and the end point
(ceiling) of the response and will be as much
influenced by the basal as by the stimulated
level.256 Furthermore, many of the known
stimulants ofEDRF act not only on endothelial
receptors but also on vascular smooth muscle
receptors (not always of the same subtype).
The resultant response to such a "double
agent" will thus depend on the relative
strengths of the EDRF mediated dilator re-
sponse and the direct constrictor response.
Clearly there is rich potential for variation in
different blood vessels, and under different
physiological conditions let alone pathological
ones.

It has generally been considered that veins
show lower EDRF activity than arteries.5157
Bioassay experiments have suggested that, at
least in some cases, the difference may lie more
in the response to EDRF than in its release.58 At
first sight, this runs counter to the generally
held clinical view that the major site of action
of its pharmacological analogue, the nitro-
vasodilator drugs, is on the venous system.59
This nitrovasodilator selectivity, however,
probably reflects the need for most organic
nitrovasodilator drugs, such as glyceryl trin-
itrate or the isosorbide nitrates, to undergo
metabolic conversion to provide the active
principle, nitric oxide, and veins seem better
endowed with this metabolic pathway than
arteries (while platelets seem to lack it
entirely)' 61-these considerations do not apply
to molsidomine, SIN- 1, or sodium nitro-
prusside which are sources of nitric oxide that
do not depend on this metabolic step. Compar-
ison of EDRF activity between different blood
vessels is in practice difficult because the ques-
tion is not as simple as it appears. Bioassay
experiments have indeed confirmed the ability
of veins (for example, human saphenous vein)
to relax in response to EDRF62 and of human
saphenous vein to produce EDRF.58 However,
EDRF activity depends not only on EDRF
production and the response to EDRF, but also
on the specific agonists used to cause constric-
tion and to stimulate EDRF release. Much of

117



Henderson

the apparent controversy in published reports
is attributable to limitations inherent in the
techniques usedandto vessel specific differences
between endothelial responsiveness to different
agonists.

Microvessels
EDRF IN VIVO
Tonic microvascular EDRF activity has been
demonstrated by infusing or feeding analogues
of arginine which block nitric oxide produc-
tion. In the intact rabbit, for example, this
causes a substantial, prolonged but reversible
increase in blood pressure-interestingly with-
out calamitous platelet aggregation.63 Inhibi-
tion of coronary EDRF activity limits per-
fusion of isolated buffer perfused hearts to the
point of inducing global ischaemia.M In the
human forearm, intra-arterial infusion of an
arginine analogue likewise reduces flow, illus-
trating the contribution of tonic microvascular
EDRF activity to the human circulation.65

EDRF AND nLOW IN VASCULAR NETWORKS
The influence of EDRF activity on the
coordinated behaviour of an intact micro-
vascular bed has been investigated in the per-
fused rabbit ear, using microradiographic tech-
niques to image simultaneously different gen-
erations ofmicrovessels (down to about 100 um
diameter) and observe their calibre in response
to changes in flow in the presence and absence of
EDRF activity."9 These studies illustrate the
interdependence of different vessels within the
bed and emphasise the need to consider the
integrated behaviour ofthe whole vascular bed.
For example, a pharmacologically induced
increase in distal resistance can raise intra-
vascular pressure and lead paradoxically to
proximal dilatation, while a reduction of resis-
tance in one part of a bed can lead to EDRF
mediated dilatation as a result of increased flow
throughout the bed.
Flow related EDRF activity amplifies a

locally induced change in resistance in the bed,
thus contributing, for example, to a meta-
bolically mediated hyperaemic response. It
also coordinates the changes in calibre
throughout the bed. Furthermore, it reduces
the increase in pressure needed to drive
increased flow: specifically, flow (Q) was shown
to be related to diameter (D) to the fourth
power (Q = aD4 + b, where a and b are
constants) when EDRF was present but not in
its absence, implying that EDRF results in
progressively reduced increments of pressure
in order to increase flow at high flow rates.
Moreover, EDRF activity was necessary to
preserve constancy of flow distribution at dif-
ferent flow rates: in the absence of EDRF
activity, flow distribution became hetero-
geneous-a form of "steal".

BRANCHING GEOMETRY OF VASCULAR BEDS

Analyses of vessel diameters in relation to flow
in the rabbit ear preparation have shown that
the pattern of branching angles in the bed
provides for optimal minimisation of power

losses-an optimality of design which is lost in
the absence ofEDRF activity.70

AUTOREGULATION
The "myogenic response", which is intrinsic to
vascular smooth muscle in most beds, describes
the constriction induced directly by an increase
in intraluminal pressure. This is a positive
feedback mechanism which makes for a poten-
tially unstable situation unless balanced by an
opposing positive feedback mechanism. EDRF
may be seen as answering this need, for pres-
sure is normally coupled to flow and increased
flow leads to EDRF mediated vasodilatation,
thus providing a positive feedback mechanism
in the opposite direction.
The myogenic response is predominantly

responsible for autoregulation offlow, whereby
the flow is maintained relatively constant des-
pite changing pressure within limits. EDRF
opposes this phenomenon. The relative
strength of these two mechanisms determines
the degree of autoregulation, as appropriate to
the biological needs of different beds.7"

PHYSIOLOGICAL IMPLICATIONS
EDRF activity is high in the microvessels. In
the intact network of the rabbit ear, it was
particularly high in those vessels best placed to
control distribution offlow (about 100-200 pm
diameter) where calculated shear force was also
highest. EDRF seems to have an important
physiological role in maintaining "efficiency"
ofperfusion. Even minor impairment ofEDRF
activity would have adverse effects on the
efficiency and work of perfusion.

Platelets
EDRF also increases cyclic GMP concentra-
tion in platelets.7275 This inhibits both platelet
adhesion and platelet aggregation,76 whereas
agents that increase cyclic AMP (prostacyclin,
adenosine) inhibit only aggregation. It is dur-
ing adhesion that platelet derived growth factor
(PDGF) is released. Cyclic GMP and cyclic
AMP act at different sites within the cell and
their effect on aggregation is synergistic.76

Activated platelets release agents (for exam-
ple, serotonin, adenosine diphosphate (ADP) )
which stimulate intact endothelium to release
EDRF; EDRF inhibits further platelet
aggregation and causes local vasodilatation-a
negative feedback. In the absence of endo-
thelium, the direct action of these same agents
causes further aggregation and local vasocon-
striction-a positive feedback. Aggregation
and constriction will thus be localised to the site
of endothelial damage.

Platelets seem to have nitric oxide synthase
themselves.77 Platelet activation is associated
with nitric oxide production, and nitric oxide
will activate soluble guanylate cyclase in the
platelets to provide some negative feedback to
the activation process.77

Endocardium
Endothelium also lines the much trabeculated
cavity of the cardiac chambers. It has recently

118



Endothelium in control

been shown that just as vascular endothelium
influences vascular smooth muscle tone so
endocardial endothelium can influence contrac-
tion ofunderlying cardiac muscle.7"2 Selective
removal of endocardium from isolated
papillary muscle preparations results in a
"negative inotropic" effect which is unusual in
that the duration of contraction is abbreviated
but contractile behaviour early during the
course of a contraction is unaltered. Effluent
from cultured endocardial cells reverses this
effect, thereby confirming that endocardium
tonically releases a myocardial contraction
prolonging factor ("endocardin"?)' 2 of as yet
unknown identity. It does not seem to be any of
the obvious candidates such as an endothelin or
a prostaglandin. Preliminary experiments sug-
gest that the tonic contraction-prolonging effect
of endocardium which has been shown in
isolated preparations is manifest also in the
intact ventricle despite the small mass of
endocardium relative to myocardium.83
Clearly, this could be important in modulating
diastolic filling. Conversely, endocardium can
also be stimulated to release EDRF which
increases cyclic GMP concentrations8 82 84 85 in
myocardium and, like other interventions
which raise myocardial cyclic GMP, shortens
the duration of contraction-an effect which is
indistinguishable from that of removing
endocardium (which does not itself alter cyclic
GMP concentrations).

Other sources of nitric oxide
It is becoming evident that nitric oxide is an
intercellular signal which fulfils a very wide
variety of physiological roles. Many cell types
other than endothelium also produce nitric
oxide-platelets (see above), brain,86 87 adrenal
cells,88 non-adrenergic non-cholinergic nerve
fibres,8990 neutrophils, monocytes, and mast
cells92; while macrophages also produce nitric
oxide as part of their immunological response
but probably by a different mechanism.93 94

Pathophysiology
There is a growing list of conditions in which
EDRF activity seems to be impaired-includ-
ing subarachnoid haemorrhage,9598 endothelial
damage and repair,91102 ischaemia and reper-
fusion, atheroma, hypertension, diabetes, heart
failure, lack of oestrogens,103 and aging."''05
Conversely, increased EDRF production dur-
ing endotoxin shock may be responsible for
hypotension'" but also perhaps for survival.
Endothelium, indeed, seems to be a prime
target for "cardiovascular risk factors".

SUBARACHNOID HAEMORRHAGE
Subarachnoid haemorrhage is known to be
complicated by cerebral vasoconstriction.
Given that haemoglobin interacts with EDRF
where it can get at it, an obvious potential
mechanism is suggested. Several studies now

provide convincing evidence that the constric-
tion is indeed attributable to inhibition of
EDRF activity by haemoglobin.9'98 Experi-
mental in vivo injection of haemoglobin or

whole blood into the subarachnoid space causes
constriction of the intrathecal'cerebral arteries
associated with a reduction in their cyclic GMP
content (T M Griffith, unpublished observa-
tions). The effects persist for up to a week, with
histological evidence of haemoglobin in the
intimal layers. This probably reflects seepage
through these intrathecal arteries, which are
peculiar in that they have no vasa vasorum and
may be more porous than other arteries.

ENDOTHELIAL REGENERATION
Several groups have studied the effects of
balloon denudation of coronary arteries fol-
lowed by regrowth. Endothelium regrows
within about a week but interestingly this may
be followed over subsequent months by pro-
gressive and selective impairment of receptor
mediated EDRF responsiveness.9"'02 These
studies have important implications. Endo-
thelial cells normally live for more than 10
years. They can obviously be kicked into rapid
reproductive activity, however, by the crude
insult of physical damage, after which they
appear morphologically different99 102 and can
exhibit altered function for up to six months."'0
The selective impairment of EDRF respon-
siveness has been analysed further in the pig
model, where the pattern of the impaired
relaxation of coronary artery rings was shown
to correspond to pertussis toxin sensitivity of
these agonists and thus to dependence on a
particular G protein that couples receptor
occupation to cell signalling.'0'107 The endo-
thelium seems to undergo an alteration of
phenotypic expression, analogous to that which
occurs in vascular smooth muscle where a
change from normal contractile to synthetic
phenotype underlies the proliferative growth
intrinsic to atherogenesis and to the intimal
hyperplasia seen after angioplasty and in graft
stenosis.

ISCHAEMIA AND REPERFUSION
Ischaemia followed by reperfusion results in
specific and probably prolonged impairment of
EDRF responsiveness while endothelium
independent responses remain unaltered.108"'1
EDRF activity is not impaired after ischaemia
alone but becomes impaired progressively dur-
ing the early minutes of reperfusion. Most
studies have used rather long periods (for
example, 60 min) of ischaemia,108 109 but
impaired EDRF responses in conduit coronary
arteries have been demonstrated after even 15
minutes in vivo ischaemia (which also alters
microvascular endothelial function as eviden-
ced by protein leak)."2 Similar specific impair-
ment ofEDRF activity is evident in the coron-
ary conduit and resistance vessels in the intact
heart. The changes are probably secondary to
mediators derived from reperfused ischaemic
myocardium rather than reoxygenation of
ischaemic endothelium itself, for endothelial
cells in culture are remarkably resistant.
Microvascular polymorph adhesion and plug-
ging are known to occur during ischaemia and
reperfusion."3 Neutrophil activation releases
superoxide radicals and impairs EDRF
activity.'14 III If adhesion is prevented by
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specific antibodies, this sequence of events is
prevented."6 Lymph draining ischaemic
myocardium has been shown to contain agents
chemotactic for polymorphs."' Adenosine
which increases neutrophil cyclicAMP content
and inhibits superoxide production,"18 can on

the other hand ameliorate polymorph plugging
and improve reflow.'" Conversely, intracoron-
ary infusion of complement components can

cause transient polymorph adhesion and plug-
ging even in the absence of ischaemia."19 The
suspicion is thus that oxygen free radicals are

involved in this impairment ofEDRF produc-
tion and that they are derived predominantly
from activated neutrophils in vivo.

Selective impairment ofendothelium depen-
dent relaxation evoked in vitro by aggregating
platelets has been demonstrated for up to 12
weeks after reperfusion."' Another conse-

quence of impaired microvascular EDRF
activity after reperfusion might be a redistribu-
tion of perfusion at the expense of the vulner-
able endocardium."'1

ATHEROMA
A wide range of hyperlipidaemic atheroma
models, ranging from the rabbit to the primate
and from hereditary to dietary hyperlipi-
daemia, have consistently shown impairment
of receptor mediated EDRF responsiveness in
large (for example, coronary) arteries while
endothelium independent dilator and constric-
tor responses are preserved.'2""2" It was at first
thought that the layer of lipid deposition acted
as a barrier interfering with EDRF diffusion to
the underlying vascular smooth muscle, but it
is now known that endothelial production of
EDRF is impaired. The phenomenon is rever-
sible though this takes as long as 18 months in
the primate model'23 and the abnormalities
have persisted for 10 weeks in the rabbit model.
Does an insult to the endothelium also affect

the less easily studied microvessels? As might
have been predicted, abnormalities have now

been reported also in the microvessels,
specifically in respect ofEDRF responsiveness
to acetylcholine, bradykinin, and the calcium
ionophore in coronary microvessels (100-
200 gm in diameter) whereas the endothelium
independent response to adenosine and
nitroprusside remained normal.'28129 The ex-

perimental hyperlipidaemia that is responsible
for inducing atheroma-with intimal hyper-
plasia, "foam" cells, and fibrosis-in the large
arteries clearly also impairs endothelial func-
tion in the microvessels, with potentially
adverse consequences for the "efficiency" and
homogeneity of flow distribution (see the sec-

tion on coronary artery disease, below).
Conversely, feeding with fish oilmay enhance

EDRF activity. 1-10-133 We may expect to hear
more of dietary manipulation of the lipid
content of cell membranes and their influence
on properties such as endothelial responsive-
ness to stimulants ofEDRF activity.

CORONARY ARTERY DISEASE

Early experimental studies with coronary
artery preparations where intact endothelium
abolished conventional vasoconstrictor re-

sponses had illustrated vividly how localised
damage provided a model of non-specific local-
ised constriction or "spasm".2 Studies with
clinical coronary artery disease have now
produced an impressively consistent body of
evidence showing that specific EDRF respon-
siveness is impaired in the large coronary
arteries, as measured by angiographic calibre of
these arteries in response to a number of
interventions. Dose responses to the "double
agent", acetylcholine, show a shift from dilata-
tion in normal arteries towards increasing
degrees of constriction in relation to graded
severity of underlying atheroma, as evidenced
by "irregularity" or "stenosis"''34 135 A similar
shift towards constrictor responses was
observed in angiographically smooth arteries in
relation to the presence of overt disease in other
coronary arteries,136 or to the presence of
known risk factors for atheroma,137 or indeed to
age.'05 The inference is that the EDRF
mediated dilator response to acetylcholine is
depressed in the presence of atheroma, of
which angiographic evidence is an insensitive
measure given the remodelling which preserves
vessel calibre until the atheroma grows quite
large. A similar shift from dilatation to con-
striction of upstream proximal arteries in rela-
tion to coexisting atheroma was seen in res-
ponse to the increased flow through these large
arteries induced by distal intracoronary injec-
tion of non-specific dilators such as papaverine
or adenosine. 36 13' This shift in the response of
proximal arteries was seen also with more
physiological interventions such as exercise,139
the cold pressor test,""4 or a pacing induced
increase in heart rate.'4'

Interestingly, these two last interventions,
which normally increase flow through the bed,
decreased flow in the presence of non-critical
upstream atheromatous stenosis, suggesting
that there are corresponding changes in the
responsiveness of resistance vessels. Recent
studies by Drexler and colleagues provide
further evidence of impaired microvascular
EDRF responsiveness in the human coronary
arterial bed: the increase in coronary flow
induced by acetylcholine relative to that
induced by endothelium independent dilata-
tion with papaverine was found to be reduced
in the presence of minor coronary artery dis-
ease and/or hypercholesterolaemia'42 (and H
Drexler, personal communication).

HYPERTENSION, DIABETES, SYNDROME X, HEART
FAILURE, CARDIOMYOPATHY, VEIN GRAFTS
EDRF activity in large arteries can also be
impaired in experimental141'45 and clinical"4
hypertension and in diabetes. 147149 Impaired
EDRF activity may also contribute to
impotence in diabetes.'50 Both hypertension
and diabetes are associated with "small vessel
disease" and it is notable that the experimental
combination of the two conditions can cause a
form of "cardiomyopathy" that seems to be the
result of focal necrosis of microvascular
origin.'5'
The pathogenesis of microvascular angina

(syndrome X) remains unknown.'52 A relative
constrictor response to ergometrine has been
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described in some such patients,'53 and
ergometrine is another "double agent" which
both stimulates EDRF release and exerts a
direct constrictor action on vascular smooth
muscle.'54 It is legitimate to speculate on a
possible role of impaired "feed-vessel" EDRF
activity despite the limited therapeutic res-
ponse to vasodilators in this condition ("lum-
ped" pharmacological presentation of a drug
may well achieve less effective dilatation than
coordinated dilatation from flow stimulated
release of an endogenous agent)."55
EDRF activity in the systemic arteries has

also now been reported to be impaired in heart
failure'56 and in the coronary bed in congestive
cardiomyopathy.'"5 Conversely it has been
reported to be increased by chronically
elevated flow.'58 It is also impaired after
preparation of vein grafts.58
Endothelium seems indeed to be vulnerable

to many insults, with potentially far reaching
pathophysiological implications.

A role in atherogenesis?
LIPOPROTEINS
Evidence is accumulating that low density
lipoproteins (LDL) impair EDRF activity in
vitro.'59'6' LDL can directly inactivate EDRF,
but it seems likely that oxidised LDL mediates
a more important and longer lasting effect. In
one study, the same adverse effect on EDRF
responsiveness could be induced by lyso-
lecithin at concentrations similar to those
found in the oxidised LDL: it was suggested
that alteration of the composition of the
endothelial lipid membrane may influence
receptor function for stimulation of EDRF
release.'62 LDL may be oxidised by, for exam-
ple, endothelial cells, macrophages, or vascular
smooth muscle cells in the arterial wall, there to
be taken up by scavenger receptors on the
macrophages where it accumulates to form
foam cells and contribute to the atheroma.'63

LOCALISATION OF ATHEROMA
The predilection of atheroma for certain sites
implies haemodynamic influences in the
process, the signal for which is thus likely to be
mediated by the endothelium. The weight of
evidence now points strongly to localisation of
atheroma at sites of low shear stress.164 In
speculating on the possible role of EDRF in
localising atheroma, two experimental observa-
tions may be relevant.

Transport of lipoproteins across vessel walls
will depend on their intravascular concentra-
tion, driving pressure, wall thickness, and wall
"permeability". As an example of this last
determinant, Caro and Lever showed that
nitrovasodilators enhanced mass transport of
particles across large artery walls'65: fewer
particles accumulated on the intimal side of the
media as the lattice of the medial smooth
muscle was relaxed, with, by implication, faster
transit across the wall. For particles, read LDL
and for nitrovasodilators, read EDRF. EDRF
activity is increased by high shear stress. High
shear stress, via EDRF, could thus reduce the
transit time ofLDL across the arterial wall and

the opportunity for oxidation en route. More
recent work indicates that LDL moves less
freely through the arterial wall than albumin,
and that high transmural pressure greatly
increases LDL concentrations in the intima,166
adding further to the view that the media acts as
a molecular sieve for LDL.167 The second
experimental observation derives from simple
experiments in which wrapping foil around a
blood vessel leads to the rapid development of
atheroma.'" One possible explanation for this
is that the foil somehow prevents the egress of
LDL from the adventitial surface of the vessel
thereby contributing to its accumulation.

ENDOTHELIAL DAMAGE/DYSFUNCTION
Endothelial damage has long been held to be
important in the atherogenic process,'69 though
opponents of the hypothesis have drawn atten-
tion to the relative lack of histological evidence
for endothelial damage. It is notable too that
localised experimental removal of endothelium
which does not damage the underlying vessel
wall does not induce intimal hyperplasia.'70
Conversely, continuing minor endothelial
damage as from an indwelling catheter does
induce intimal hyperplasia.'7' It seems that the
normal repair process after an episode of
endothelial injury is self limiting, whereas
prolonged stimulation of repair from recurrent
endothelial damage perpetuates a chronic
inflammatory response which results in the
atheromatous lesion.

Endothelial cells normally divide only rarely,
but they can be stimulated to divide rapidly to
re-cover a denuded area. Such recently re-
grown cells have a somewhat different morpho-
logical appearance and their function (as man-
ifest for example by altered EDRF responsive-
ness) remains abnormal for long periods. It has
now been shown that other insults that fall
short of causing actual denudation also result in
prolonged dysfunction, associated generally
with some alteration of morphological
appearance. The evidence suggests that
endothelium can undergo phenotypic modula-
tion in response to several adverse stimuli, as
for example the cytotoxic action of oxidised
LDL. A central role of endothelium in ath-
erogenesis might then be dependent on such
phenotypic alteration, rather than on actual
damage itself. Whether the altered phenotypic
expression represents a single functional state
characterised by both cell division and a pat-
tern ofaltered function, or whether there can be
variations on this theme (that is, a spectrum of
altered phenotypes), remains unknown.
Likewise it is not clear whether the altered state
necessarily reflects the response of neighbour-
ing endothelial cells to cryptic cell loss, or
whether it can be the direct response of endo-
thelial cells to adverse stimuli that fall short of
causing actual cell death.
Reduced EDRF responsiveness is thus likely

to be but one manifestation of altered endothe-
lial function-a marker of an altered state
which has other atherogenic characteristics, as
for example by increasing leucocyte adhesion
and attracting and promoting growth of
underlying cells, leading to the atheroma which
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has many characteristics of a chronic local
inflammatory response.
Reduced EDRF activity itself, however,

could have far reaching effects which might
contribute to the atherogenic process. Nitric
oxide is an oxygen radical scavenger. Less
nitric oxide implies more superoxide, with
greater propensity to oxidise LDL as well as
contribute to further cell dysfunction. Less
EDRF implies less porosity of the arterial wall
and longer transit time, offering greater oppor-
tunity for oxidation en route. Less EDRF
implies less inhibition ofplatelet adhesion with
its consequent very localised release of platelet
derived growth factor (which may then con-
tribute to the cascade of events underlying
intimal proliferation and atheroma). Less
EDRF also means lower concentrations of
cyclic GMP in the artery wall, and cyclic GMP
exerts antiproliferative effects in some prepara-
tions of vascular smooth muscle cells,'72"174
possibly in relation to whether they are in the
contractile or synthetic phenotype.'75

An integrated system
A lecture such as this offers a rare opportunity
for indulging in an overview of the field that
seeks to discern form emerging through the
mists of uncertainty which always lie ahead.
Technical developments that allow us to
measure and analyse flow have coincided with
new conceptual insights into its control. We
have moved from a cardiovascular preoccupa-
tion with pressure, faute de mieux, to an era in
which we are seeing an accelerating exploration
ofthe complexities offlow. Flow after all is what
the circulation is all about. It has become clear
that endothelium, sited at the interface between
flowing blood and the vessel wall, plays a key
role in controlling vascular structure as well as
tone. Future cardiovascular physicians will
surely look back on the present surge in our
understanding ofthe vascular system as a major
chapter in the evolution of our specialty of
cardiovascular medicine.
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